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Two-actor conflict with time delay: A dynamical model
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Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups,
or individuals, have been developed that are capable of predicting various outcomes depending on the chosen
feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper
examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain
initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values
of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing
critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These
results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and
assessing their strategic decisions.
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I. INTRODUCTION

Understanding the different causes and aspects of the
real-life conflicts between groups of people and/or individuals
and the interactions of these causes plays a major role in the
pursuit of peace and stability. Oftentimes, misunderstanding
or even not considering some aspects of these conflicts could
lead to the failure of peace talks or negotiations that aim to
resolve conflicts or at least bring together the views of the
conflicting actors (be they nations, groups, or individuals).
Such failure may end up escalating the conflict and bringing
it to a complicated level of instability and/or negotiation
gridlock.

Mathematical modeling of a conflict may help uncover its
mechanism [1] and yield insights into how the dynamics of
a conflict depends on the interactions between actors. The
analysis of the structure of these models can determine their
logical consequences and effects on system stability. These
models also provide new predictions about conflict that can
motivate social and political researchers to design experiments
to test them [2]. Several mathematical models of conflict
were developed with a common feature of how an actor
can respond to another. Some of these models consider that
the reaction functions, such as cooperation and competition
between actors, are logical representations of many types of
conflict [3,4]. Other models developed qualitative dynamical
systems metaphors [5] (see also [6]), while others [7,8] relied
on qualitatively defined response functions between the actors.
Linear models [9] and piecewise linear models [10–12] were
also developed (for more detailed survey of the dynamical
models of conflict, see [13,14] and the references therein). In
recent works [2,14], Liebovitch et al. built on the previously
mentioned models and their insights to develop a nonlinear
ordinary differential equation model of the conflict between
two actors. Interestingly, some results of Liebovitch’s model
are consistent with previously observed characteristics of
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conflicts. The model also provides testable predictions of a
conflict outcome depending on strategies or conditions chosen
by the actors.

On the other hand, over the past few decades there has
been extensive work studying the effect of time delay of
response functions on the stability of dynamical systems
[15–19]. However, none of the dynamical conflict models
considered the effect of time delayed response (feedback)
between actors. Cook et al. [20] mentioned that time delays can
cause cyclical behavior in their model of marital conflict, but
no systematic analysis was presented. In sum, most models
of conflict assumed that the feedback between the actors to
be instantaneous and simply neglected the effect of the time
elapsed between the moment an action is taken by one actor
and the moment that it is received by the other.

In this paper, we modify the nonlinear dynamical model
presented in [2,14] by considering nonlinear delayed response
between two actors. We provide detailed analysis of the effect
of time delay on the stability of a steady state for various
scenarios of cooperation, competition, and mixed feedbacks
between two actors. We obtain critical delay surfaces for some
cases and discuss the effect of symmetry breaking on the
stability of the neutral state (i.e., when the emotional states
of both actors are at their “uninfluenced” levels; these are
the levels that would have been reached had there been no
interaction between them).

II. MODEL DESCRIPTION

In this section, we develop a model for the dynamics of the
conflict between two actors. We begin by briefly discussing
the notion of “emotional states.” While each real-life conflict
has its own details and unique historical background [2], these
conflicts may share some common features. One feature is that
the state of the conflict depends on its previous state. Also, each
actor in the conflict interacts and responds to the other actor
[2]. Such interaction among the system elements, with each
element adjusting to others, gives rise to higher order coherent
patterns [21]. In dynamical models of these conflicts [13],
emotional states may represent beliefs, behaviors, opinions, or
feelings of actors. As an example, in a dynamical model of
marital conflict, the variables represent the feelings (hostility
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or friendliness) of the wife, husband, and child indicated by
the number of angry facial expressions per unit time [10],
which can be considered as a quantization of their emotional
states. Such a state of an actor of course changes over time
depending on various factors such as the actor’s motives and
attitude, as well as feedbacks from such states of other actors,
which together drive the conflict-interaction patterns of the
disputants [13]. Once viewed in this way, it seems natural that
mathematical tools in dynamical systems have been applied to
the problems of conflict (see the Introduction).

Now, following [2], let x1 = x1(t) and x2 = x2(t) represent
the emotional or behavioral states at time t of the first and the
second actors, respectively. The dynamics of the system can
then be described by the following set of equations:

dx1

dt
= m1(x1 − b1) + f12(x2,x1),

(1)
dx2

dt
= m2(x2 − b2) + f21(x1,x2),

where

f12(x2,x1) = C12 tanh(αx2),
(2)

f21(x1,x2) = C21 tanh(αx1).

The above system can be written as follows:

ẋi = mi(xi − bi) + fij (xj ,xi), (3)

where

fij (xj ,xi) = fij (xj ) = Cij tanh(αxj ), (4)

with the subscripts i,j = 1,2 and i �= j represent the two
actors, where ẋi represents the time derivative of the emotional
state xi . The parameter, mi < 0 is the “inertia” term which
represents the tendency of an actor to remain in the same
state for a period of time [10]. In fact, this term is nothing
but the time constant of an exponential relaxation of the first
order differential equation; we follow Gottman et al. and
Liebovitch et al. [2,10,11,14] and use the same terminology.
The uninfluenced state of actor i is represented with bi . The
influence function given by Eq. (4) represents the effect of
response by actor j to actor i, where α > 0 is a constant
(we set α = 0.5 for all calculations of this work), and Cij

denotes the response strength. Cooperation is modeled as a
positive feedback while competitions is modeled as a negative
feedback.

In this study, we consider cases in which the feedback
between the two groups is not instantaneous. This means that
there will be some significant period of time before the two
groups respond to each other. For example, one can assume
that the negotiation of the two groups is being mediated by a
third party who carries the suggestions, requests, and responses
from one group to the other. The existence of the mediation
process and, probably, the internal deliberations between the
members within each group itself, will take a considerable
period of time for one group to get the response from the other
one. This period of time can be considered as a delay. As a
result, the system of Eqs. (3) can be modified as follows:

ẋi = mxi + Cij tanh[αxj (t − τj )], (5)

where τj denotes the time delay defined as the time elapsed
before actor xj responds to actor xi . Here, we consider the same
conditions for the inertia (mi) and the uninfluenced state (bi) as
discussed in [2], namely m1 = m2 = m = 0 and b1 = b2 = 0,
but with α = 0.5. Here, it is worth pointing out some properties
of the hyperbolic tangent function chosen to represent the
feedback. At small influence levels, this (sigmoid) function is
almost linear. This enables each actor to influence the other
one approximately proportionately in magnitude. Moreover,
this function is bounded when emotional states are large, pre-
venting each actor’s emotional state from escaping to infinity
(see [2,14] for more discussion and graphical explanation).

In the following analysis, we focus on studying the stability
of the fixed point x∗

j (i.e., equilibrium) for different values of
m, Cij , and time delay τj . For simplicity, we consider only
cases where both actors take equal time delay to respond to
the other, that is, τ1 = τ2 = τ . Performing the linear stability
analysis around the fixed point x∗

j such that xi = x∗
i + x ′

i , the
above system becomes

ẋ ′
i(t) = mx ′

i(t) + αCij sech2(αx∗
j ) x ′

j (t − τ ). (6)

III. MODEL ANALYSIS

Notice that time delay does not change the number and
location of equilibrium points. Because sech2(αx∗

j ) > 0, the
above equation can be rescaled to

ẋ ′
i(t) = mx ′

i(t) + C̃ij x ′
j (t − τ ), (7)

where C̃ij = αCij sech2(x∗
j ). For notational simplicity, the

symbols prime (′) and tilde (̃ ) are dropped from this point
onward. Several papers studied the stability properties of the
above delay system in detail [22,23] and obtained the stability
surface of the stable fixed points for various values of m, Cij ,
and τ . In this paper, our concern is on the zero fixed point,
that is, (x1,x2) = (0,0) and we refer to it as the neutral state
hereinafter. Following [23], Eq. (7)—the linearized system
around the neutral state—can be written in the vector/matrix
form as

ẋ(t) = mx(t) + Cx(t − τ ), (8)

where x(t) = [x1(t) x2(t)]T and C = [Cij ] represents the
matrix of feedback strength.

At this point, it is useful to briefly discuss the notions of “co-
operation” and “competition” in this model and how they relate
to those in other, more established and more familiar, models of
interacting populations such as predator-prey (Lotka-Volterra)
[24,25] or cooperator-defector (evolutionary game) [26–29]
systems. In all these models, the cooperation/competition
notions are defined by the sign or direction of change in
abundance, magnitude, frequency, or density (depending on
the contexts) of one population caused by such changes in the
other(s). As such, our conflict model can be considered con-
ceptually similar to these models for some choices of elements
Cij of C. The difference, however, lies in the dependence of
the interaction or feedback, or in our terminology influence
function, on the state of actor of interest. In the predator-prey
or cooperator-defector systems, the interaction depends on
the densities or frequencies of both populations, typically
in a mass-action manner (i.e., product of two densities),
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reflecting the probability that the two interacting agents come
from different populations. In contrast, our influence function
[Eq. (4)] depends only on the state of the other actor; this is
because there are only two agents in the system, who interact
with each other with certainty by construction. Recognizing
these conceptual similarity and difference would allow us to
draw lessons and tools from these more established models to
apply to the further analysis of conflict. Following [22,23], we
can decompose C according to C = E−1�E, where � is the
Jordan form with eigenvalues λ = ±√

C12C21 and matrix E
contains the corresponding eigenvectors ê1 and ê2. Multiplying
Eq. (8) on the left by E, we obtain

Eẋ(t) = mEx(t) + �Ex(t − τ ). (9)

If we project x(t) onto the ith eigenvector êi , we obtain their
time-dependent coefficients ui(t) = êi · x(t), and as a result,
Eq. (9) reduces to the following decoupled representation of
the system dynamics:

u̇(t) = m u(t) + λ u(t − τ ), (10)

where we have dropped the index i for clarity. Assuming a
solution of the form u(t) = ezt , z ∈ C, the stability condition
is determined by the following characteristic equation:

H (z) = z − m − λe−zτ = 0. (11)

The solution of Eq. (8) is stable if all solutions of
Eq. (11) satisfy Re[z] < 0. When Re[z] is positive, the system
destabilizes, and the critical value is obtained when Re[z] = 0.
According to a theorem of Datko [30], the possibility of a
change of sign of Re[z] by way of Re[z] = ∞ is excluded.
Hence, the change of sign of Re[z] must occur at z = iω.

We consider two examples: (i) a symmetric response case
(C12 = C = C21) with the real eigenvalues λ = ±

√
C2 =

±|C|; and (ii) an asymmetric response case (C12 = C =
−C21) with the purely imaginary eigenvalues λ = ±i

√
C2 =

±i|C|, for any value of m < 0. The reason for choosing these
two cases will be clear in the next sections. For these two cases,
it is worth noting that λ is either real or purely imaginary but
cannot be complex (having both real and imaginary parts). On
the critical delay surface parameterized by m, C, and τ , the
solution z of the characteristic equation is purely imaginary,
that is, z = iω, ω ∈ R+

0 . This surface represents the boundary
at which the system bifurcates; that is, the neutral state
(x1,x2) = (0,0) changes its stability. Substituting in Eq. (11)
and separating the real and imaginary parts, we obtain

−m = Re[λ] cos(ωτ ) + Im[λ] sin(ωτ ), (12)

ω = Im[λ] cos(ωτ ) − Re[λ] sin(ωτ ), (13)

where ω2 = C2 − m2. The above equations provide the condi-
tion for the smallest positive value of τ and the critical values
of the response strength for which a change in stability may
occur [18]. In the symmetric case, there is no solution of the
characteristic equation in the parameter subspace for τ > 0;
hence, the system will remain as it is for τ = 0, as shown in
Fig. 1(a). In the asymmetric case, the system is stable at τ = 0
for all values of c and for all values of m (where m < 0).
The system destabilizes for τ > τ ∗ = ω−1 arccos(ω/m) in
the region of |C| > |m| and remains stable in the region of

S

U

U
S

SU

m
mC C

τ τ

(a) (b)

FIG. 1. Stability surfaces for the system described by Eq. (7). The
critical stability surfaces define the minimal delay value separating
stable and unstable regions of the neutral state (x1 = 0,x2 = 0)
as a function of the feedback strength c and the intrinsic inertia
parameter m for (a) symmetric response strengths (C12 = C = C21)
representing the cooperation and competition feedback and (b)
asymmetric response strengths (C12 = C = −C21) representing the
mixed (positive-negative) feedback. The region denoted by S shows
the stable areas while U shows the regions where the system is always
unstable independent of time delay τ . SU shows the regions where
the system is unstable above the critical surface and stable below it.

|C| < |m|, where Eq. (11) has no solution. The stability surface
for the asymmetric case is illustrated in Fig. 1(b).

These two particular cases of symmetric and asymmetric
feedbacks provide insights for the general case with any
combination of feedback strengths. For a fixed value of m < 0,
we obtain the stability surface parameterized by the two
different feedback strengths C12 and C21 with time delay τ ,
as shown in Fig. 2. The cases of symmetric and asymmetric

C21

C12

C12

C
21

τ

U

S

SU

U

S

SU
S

UU

USUSU

SUSU

FIG. 2. (Color online) Stability surface for the neutral state of the
system described by Eq. (7) with delay at a fixed value of the inertia
parameter m = −0.1 (this value is chosen only for a better visual
representation although all values m < 0 return similar results). The
surface defines the minimal delay value as a function of the feedback
strengths of the two actors, C12 and C21. The region denoted by S
shows the stable regions while U shows the regions where the system
is always unstable. SU shows the regions where the system is unstable
above the critical surface and stable below it. The right panel is the
top view of the surface shown in the left panel.
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feedbacks considered above correspond to diagonal lines of
this figure.

In addition, we can show, using the characteristic polyno-
mial H (z) for z = iω, that

dRe[z]

dτ
= −Re

[
∂H/∂τ

∂H/∂ z

]
= ω2

|K|2 > 0, (14)

where K = λτ + eiωτ [see [23] for proof of the result obtained
in Eq. (14)]. This result implies that as τ increases across the
critical surface from below, the equilibrium, once destabilized,
will remain unstable for all τ larger than the critical value τ ∗.
In other words, for τ > τ ∗, one has to change other parameters
(such as feedback strengths or the inertia) for the stability of
the system to be maintained.

IV. RESULTS AND DISCUSSION

A. Weak feedback

Although there are many combinations of parameters that
one can investigate, we limit ourselves to those discussed in [2].
That is, the two actors have the same inertia (m1 = m2 = m =
−0.9) and the same uninfluenced state (b1 = b2 = b = 0). On
the other hand, we consider various combinations of feedback
strengths between the actors (C12 and C21) with different initial
conditions and with different values of time delay. However,
we assume that the two actors will have identical time delay,
that is, τ1 = τ2 = τ . The feedback/response combination types
include positive-positive feedback (cooperation), negative-
negative feedback (competition), and the mixed case with
positive-negative feedback. It is worth noting that the first
two types of feedback represent the symmetric case, while the

mixed feedback type represents the asymmetric case discussed
in the previous section.

For all three types of feedback (cooperation, competition,
and mixed), if the response strength is weak (i.e., the magni-
tudes of feedback strengths |Cij | are below a threshold equal
to the inertia to change |m|), the two actors will evolve to the
neutral state (x1,x2) = (0,0) for any value of time delay τ � 0
and regardless of their initial conditions. This result can be
observed by considering the points corresponding to parameter
values |Cij | = 0.5 < |m| = 0.9 in Fig. 1(a) for the symmetric
feedback types (cooperation and competition) and Fig. 1(b)
for the asymmetric (mixed) type (see also Fig. 2 for a specific
inertia value m < 0, where the former cases of symmetric and
asymmetric feedbacks correspond to the different diagonals
of this general case). Numerical integrations in time for weak
feedback without and with time delay for the three feedback
types are shown in Fig. 3. The results show that even for large
values of time delay, the two actors will evolve to the neutral
state, just as they do when they respond instantaneously (i.e.,
without time delay), but with longer relaxation times.

B. Strong positive-positive (cooperation) feedback

In this case, as the feedback strength exceeds the inertia
(Cij > |m|), there is a bifurcation in the dynamical behavior
for all time delay values and any initial emotional states of
the two actors. However, as shown in Fig. 4, when the initial
values of the two actors are of different signs, both actors
will oscillate out of phase in their approach to a new non-
neutral state [i.e., (x1,x2) �= (0,0)]. As time delay increases,
the period with oscillatory behavior persists longer before the
actors finally settle onto the new state. It is worth noting that
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FIG. 3. (Color online) Time series of emotional states of the two actors, x1(t) (solid line) and x2(t) (dashed line), with weak feedback
strengths (|C12| = |C| = |C21| = 0.5 < |m| = 0.9) for all types of feedback. Numerical integration is used to calculate x1(t) and x2(t) as the
emotional states of the two actors evolve from their initial values of x1(0) = 1 and x2(0) = 2 for the three feedback types (rows) when the
feedback strength (|C|) is less than the threshold equal to the absolute value of the inertia to change, that is, |C| < |m|. The first column shows
the results when there is no time delay and the second column with time delay, τ = 1. Note that the two actors will evolve to the neutral state
x1(t) = 0 and x2(t) = 0 in all feedback types for any value of time delay.
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FIG. 4. (Color online) Time series of emotional states of the two actors, x1(t) (solid line) and x2(t) (dashed line), with strong positive-positive
feedbacks (C12 = C21 = 3) at different time delay values (columns) with m = −0.9. The values of x1(t) and x2(t) are shown as the states of
the two actors evolve from different initial values (rows). The values of x1(t) and x2(t) always evolve toward the stable states where either both
are positive or both are negative for any value of time delay τ � 0. When the initial conditions are different, both actors will oscillate out of
phase as they evolve towards the same final state. The actor of stronger initial emotional state (larger magnitude) will drag the other towards
the new state that is closer to its initial side.

the actor with an initial value of larger magnitude, regardless
of its sign, will attract the other to its side and evolve together
to a new state other than the neutral state.

C. Strong negative-negative (competition) feedback

In the case of a strong negative-negative feedback (Cij <

m < 0), numerical simulations in Fig. 5 show that the two
actors of different initial conditions will evolve to two
different states other than the neutral state [(x1,x2) = (0,0)]
for any value of time delay, τ � 0. We call the actor with
a positive final state “winner” and that with a negative final
state the “loser.” These two final states can be of different
signs even if the initial emotional states are of the same
sign. Surprisingly, when the two actors have different initial
conditions, although of the same sign, oscillatory behavior
is detected with the existence of time delay. This oscillatory
behavior will last before the two actors split and evolve to their
new and opposite emotional states. The period with significant
oscillatory behavior increases as the time delay increases.

When the actors have exactly the same parameters and
identical initial conditions, the scenario will be quite different.
In this case, in the absence of time delay the two actors will
evolve monotonically towards the neutral state as shown in [2].

When time delay increases, but remains less than some critical
value, the two actors will oscillate around the neutral state
before they finally settle onto it (i.e., damped oscillation). As
time delay increases, the two actors will destabilize, oscillating
around the neutral state with growing amplitudes towards a
final fixed amplitude.

D. Strong positive-negative (mixed) feedback

When there is a positive feedback from one actor while
the other actor responds negatively (i.e., asymmetric response
strengths with purely imaginary eigenvalues λ), numerical
integrations in Fig. 6 show that the emotional states of both
actors oscillate with decaying amplitude as they evolve toward
their neutral state if the time delay is less than a critical value,
τ < τ ∗. If the time delay exceeds this particular critical value
for given parameters, the neutral state will destabilize and
approach an oscillation with a fixed amplitude. According
to Fig. 1(b), this scenario means that the system crosses the
critical delay surface and becomes unstable for τ > τ ∗. It is
worth noting that there will be some phase shift between the
two actors although they may have identical initial emotional
state and time delay. This implies that the out-of-phase
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FIG. 5. (Color online) Time series of emotional states of the two actors, x1(t) (solid line) and x2(t) (dashed line), with strong negative-negative
feedbacks (C12 = C21 = −3) at different time delay values (columns) with m = −0.9. The values of x1(t) and x2(t) are shown as the states
of the two actors evolve from different initial values (rows). In the absence of time delay, both actors, with the same parameters and the same
initial conditions, will evolve to the neutral state. If time delay is less than a critical value, the two actors will oscillate about the neutral state
with decaying amplitude. As time delay exceeds the critical value, both actors will oscillate in phase about the neutral state but with growing
amplitudes. When the initial conditions are not the same, the two actors will oscillate for a short period of time and move away from each other
toward two opposite states. The larger the time delay, the longer the period with significant oscillatory behavior.

oscillatory behavior of the two actors is not sensitive to the
initial conditions of the two actors.

E. The effect of one actor unilaterally temporarily
reversing its feedback

In the absence of time delay, Figs. 4 and 5 show that both
systems with the positive-positive (cooperation) feedback and
negative-negative (competition) feedback types reach fixed
points. Liebovitch et al. [2,14] showed that these stable
outcomes can be reversed by one actor alone (call it the
controlling actor) unilaterally switching its feedback for a
duration of time. Switching the controlling actor’s feedback
from positive to negative in the positive-positive feedback
type (or from negative to positive in the negative-negative
feedback type) will give a rise to the previously discussed type
of positive-negative feedback (see Sec. IV D) which will lead
to an out-of-phase oscillation of the emotional states. As the
controlling actor switches its feedback for a second time to its
original value after a specific duration of time, the system will
be back to the initial scenario but effectively with new initial
conditions defined at the moment of the second switch. These
new initial conditions will depend on the duration of time

between the two switches. As a result, and since the outcomes
of the cooperation and competition cases (Secs. IV B and IV C)
are sensitive to initial conditions, we may see a change in the
final configuration of both actors’ emotional states. Therefore,
the duration of time between the first and the second switch,
denoted by D, is the factor that determines the transient and
final emotional states of the two actors. The panels in the
first column of Fig. 7 show the results of such switching for
a negative-negative case without time delay for two different
D’s. Hence, with a proper choice of D, one actor will be able
to reverse the role of winner or loser in a conflict [2,14] (also
noted by [10,11]).

However, time delay can alter the proper choice of D.
Time delay itself will cause oscillations depending on the
initial conditions of both actors. As a result, it is not only
the duration between the first and the second switches, but
also the time delay, that affects the new initial conditions
at the time of the second switch. In the top row panels of
Fig. 7 (D = 0.75), we see that increasing time delay is not
enough for one actor to reverse the roles of winner and loser
in a conflict. On the other hand, for duration D = 1.5 and
without time delay (Fig. 7, bottom-left panel), both actors
move to the opposite fixed points, and the winner/loser roles are
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FIG. 6. (Color online) Time series of emotional states of the two actors, x1(t) (solid line) and x2(t) (dashed line), with strong positive-negative
feedbacks (C12 = 3, C21 = −3) at different time delay values (columns) with m = −0.9. The values of x1(t) and x2(t) exhibit out-of-phase
oscillation about the neutral state as they evolve from different initial values (rows). As time delay increases, the amplitude of the out-of-phase
oscillation becomes larger, and eventually changes from being damped to undamped.

reversed. However, increasing time delay results in oscillatory
behavior and consequently different new initial conditions at
the second switch. As a result, the controlling actor may not
be able to reverse the winner/loser roles in the conflict with the
same switching duration. Instead, other parameters must also
be changed, for example, increasing the switched feedback
strength in order to retain the reverse scenario for the same
duration or changing the moment at which the switch starts.
It is worth noting here that these patterns are sensitive to the
initial conditions of the both actors as well as the feedback
type.

F. The effect of one actor unilaterally responding with delay
and delay symmetry breaking

In the previous sections, we assume that time delays for
both actors are identical. In other words, each actor is given
(or takes) the same amount of time given to (or taken by)
the other actor to respond. This “fairness” (or symmetry) of
equal time delay can be understood in the presence of a fair
mediator controlling peace talks or negotiations. However, in
real-world conflicts, these time periods required to respond
may differ from one actor to another. Interestingly, time delay
may be used by one actor as a tactical parameter to change the
whole outcome (emotional states) of both actors. Comparing
the third-row with the first-row panels of Fig. 8, we see
how one slow actor (i.e., with delay) alone could completely

change the emotional states of both actors assuming that
the other actor responds instantaneously. For the positive-
positive (cooperative) case, both actors will leave the neutral
state towards a new state in the side of the controlling actor
(compare the first and third rows in the first column of Fig. 8).
This is as if the slower actor drags the other actor toward its
state. For the negative-negative (competition) type, the delayed
response of one actor alone will also drive both actors to
evolve away from the neutral steady state towards two new
opposite (positive and negative) emotional states (compare
the first and the third rows of the middle column of Fig. 8).
On the other hand, in the case of mixed (positive-negative)
feedback, both delay and instantaneous actors keep oscillating
with decaying amplitudes around the neutral state. However,
these oscillations are of larger amplitudes and persist longer
than those when both actors respond instantaneously.

In fact, the model shows that even very small symmetry
breaking of the time delay values may result in dramatic change
of the emotional states of the actors. The last row of Fig. 8
demonstrates the effect of this symmetry breaking in time delay
for the different feedback types. For the cooperative feedback
with opposite initial conditions, even a small difference in
time delay values of both actors results in driving both actors
to evolve with oscillation away from the neutral state and
stay in a new state on the side of the actor with larger,
although slightly, time delay (compare the fourth and the
second rows of the first column of Fig. 8). In competition
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FIG. 7. (Color online) The effect of time delay when one actor unilaterally changes the sign of its feedback in a conflict with negative-negative
feedback. In the first row: at time t = 6, actor x1 temporarily switches its strategy to positive feedback for duration D = 0.75. For all time delay
values, both actors will evolve to their previous fixed states. In the second row, the duration is larger: D = 1.5. In this case, for any time delay
less than a certain value, the two actors will evolve to two states opposite their respective signs before the switch. As time delay increases, the
reverse of the states cannot be achieved. This effect is highly sensitive to the initial conditions, moment of switch, duration of switch, and the
time delay. The initial conditions of the two states shown are x1(0) = 1.0, x2(0) = 0.5, and the inertia m = −0.9.

feedback type, the effect of such small symmetry breaking
in time delay results in the two actors oscillating away from
the neutral state toward two new opposite emotional states
(compare the bottom and the second panels of the middle
column of Fig. 8). Clearly, the larger the difference in time
delay values, the earlier the split occurs (comparing with the
third plot of the same column panel). In the mixed feedback
case, small differences of time delay values will not be
enough to make notable changes of the outcomes. Again,
these results may differ depending on the values of initial
conditions.

V. SUMMARY AND CONCLUSION

In this paper, we use analytical and numerical methods
to study the effects of time delay on a simple dynamical
model of conflict under different feedback configurations.
We find that the inclusion of time delay results in a rich
set of predictions and insights. Our results show that when
the feedback strength is less than the absolute value of the
inertia, time delay cannot destabilize the neutral state: Time
delay will only extend the relaxation time for both actors to
reach it. Our analysis shows that time delay plays an important
role in controlling the transient oscillatory dynamics not only
in the positive-negative feedback type, but also in the other
types (with strong negative-negative and positive-negative

feedback). This result confirms a previous prediction by [20].
For the cooperative feedback, time delay can cause both
actors to leave the neutral state (with or without oscillation,
depending on the initial values) and evolve towards a new
state that takes the side of the actor of a stronger initial state.
In a strong competitive feedback type, time delay increases
the period with significant oscillatory behavior before the
two actors evolve towards two opposite states if their initial
emotional states are not identical. However, when the two
initial states are identical, both actors will oscillate in phase
around the neutral state but with decaying amplitudes if time
delay is less than a threshold, and with undamped amplitudes
if time delay exceeds the threshold. Similar observations are
obtained for the mixed feedback type, but with out-of-phase
oscillations.

We show that time delay may enable a tactical switch of
feedback by a single controlling actor. Liebovitch et al. [2,14]
showed that a single actor can unilaterally swap the loser
and winner roles in a conflict by switching the nature of its
feedback with proper timing. However, in the presence of time
delay, we show that a strategic timing of the switch entails
the consideration of the magnitude and duration of the switch
necessary to reverse the conflict outcomes. This is because
time delay itself may cause oscillations (depending on time
delay values and initial conditions) which in turn may alter
the new initial emotional conditions at the moment of switch.
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FIG. 8. (Color online) The effect of one actor responding unilaterally with delay and the effect of symmetry breaking in time delay values
on the stability of the neutral state. The three columns represent the three different types of feedback: cooperation, competition, and mixed,
respectively. The first row shows the previously obtained results of the time series of the emotional states of the two actors, x1(t) (solid line)
and x2(t) (dashed line), with instantaneous (undelayed) responses. The second row is the time series of x1(t) and x2(t) with the same nonzero
delay values, τ1 = τ2 = 1. The third row shows the effect of one actor who unilaterally responds with delay while the other actor responds
instantaneously. The last row shows the effect of a small symmetry breaking between time delay values on the stability of the neutral state of
the two actors. The initial conditions are the same for each type. The inertia value m = −0.9.

Indeed, potential future work may consider the duration of
switching and time delay together as a strategy with some
associated cost in conjunction with the benefit associated
with reversing the winner/loser roles. The insights of these

predictions can be tested by scholars dealing with conflict
resolutions strategies. They may also provide material for
social psychology laboratory scientists to design and perform
experiments to test them.
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